' preserveAspectRatio='none' x='468' y='205' width='355' height='233' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAOkBYwMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/APp34mfEPwv8OtHh1TxPeSQRTy%2BVBHDE0kkrAbjtUdgASSeBQBdsvEEfiDQdTuPDM8Jvbaa5sk%2B1xuI47qJihV1GGKhwM46jp1oA4j4XeNfFusfE3xF4T1mXQdXsdHtYmbVdHtpYYo7lj81s4kkcFwPm%2BU8DrgnAAMn40fEfxp4O8bvBbWtvYeE4dMiuJ9Zm8PXN%2BkUzSujK7RTRhFChD0J59xQBk%2BO/jP4qttY8av4Qh0GfSPBenWN7efbIZXk1D7QvmfunSQCMBDwSrZPtQB7PpviXTryytLqNL0i6tIrtAtlK5CSDK5KqQDwePagC1/bVn/zx1H/wXT//ABFAB/bVn/zx1H/wXT//ABFAB/bVn/zx1H/wXT//ABFACDW7M/8ALHUf/BdP/wDEUAL/AG1Z/wDPHUf/AAXT/wDxFAB/bVn/AM8dR/8ABdP/APEUAI2t2SjJh1Hrj/kHT/8AxFAC/wBtWf8Azx1H/wAF0/8A8RQAf21Z/wDPHUf/AAXT/wDxFAB/bVn/AM8dR/8ABdP/APEUANGuWJYr5Wo5ABI/s646H/gHsaAHf21Z/wDPHUf/AAXT/wDxFAB/bVn/AM8dR/8ABdP/APEUAH9tWf8Azx1H/wAF0/8A8RQAi63ZMMiLUT/3Dp//AIigBf7as/8AnjqP/gun/wDiKAD%2B2rP/AJ46j/4Lp/8A4igBG1yyUZMOo9QP%2BQdP3/4BQAv9tWf/ADx1H/wXT/8AxFAB/bVn/wA8dR/8F0//AMRQAf21Z/8APHUf/BdP/wDEUAINcstxXytRyBnH9nT/APxFAC/21Z/88dR/8F0//wARQAf21Z/88dR/8F0//wARQAf21Z/88dS/8F0//wARQAi65ZMMiLUSP%2BwdP/8AEUAL/bVn/wA8dR/8F0//AMRQAf21Z/8APHUf/BdP/wDEUAIdbsgMmHUf/BdP/wDEUAL/AG1Z/wDPHUf/AAXT/wDxFAB/bVn/AM8dR/8ABdP/APEUAH9tWf8Azx1H/wAF0/8A8RQAn9t2e4jydRyP%2BodP/wDEUAL/AG1Z/wDPHUf/AAXT/wDxFAB/bVn/AM8dR/8ABdP/APEUAH9tWf8Azx1H/wAF0/8A8RQAi63ZEZEOo/8Agun/APiKABtcs1XJh1HHvp0//wARQBJf6rbWUqxzJclmUMPLtZZBj6qpGeOlAHjP7X1poF54b0iG/wBT12y1eaS4t7BdH037dPPFJEVuEMOQCuwgk7gRgEUAdD8DdOttR%2BElxbRz%2BJ7ebVJrx7681K1FhfvcSsfMmVFJEfJ%2BXGcYFAEnhT4LaF4Z8NX/AIc0vxJ4rXS7y0ltvszaiAsPmMGaSPag2yZB%2Bbk8mgC14x%2BEmleKrRNP1PxP4tGmG1itbiwi1MrBdJGAB5gKk5bA3FSuaAK3ir4H%2BDPEGpzXkjapp0N5awWeo2en3Zhgv4YMeUky4JYKAFBBBwMUAd9ZRrFq9xEiqqJaQKqqMAANKMAUAXmkwcBGY%2BgoATzG/wCeEn5r/jQAnmN/zwk/Nf8AGgBEkbb/AKiTqe6/40AO8xv%2BeEn5r/jQAeY3/PCT81/xoAjmZ2QAQSfeU9V7EH1oAeJHx/qZPzX/ABoAXzG/54Sfmv8AjQAeY3/PCT81/wAaAIYy4upH8l8FFUcr2Le/vQBN5jf88JPzX/GgA8xv%2BeEn5r/jQAeY3/PCT81/xoAjgd1jwYJOpPVfX60ASeY3/PCT81/xoAPMb/nhJ%2Ba/40ARXMm6MAqynevX/eHpQBYHSgBaACgCFP8Aj7k/65p/NqAJqACgBD0oAjtf9V/wJv8A0I0AS0AFAEc/3B/vr/6EKAHr0FAC0AFADF/1zf7o/rQA%2BgAoAKAI7f7h/wB9v/QjQAXHNvJn%2B6f5UAUNSAMyZAPyD%2BtAHkf7UlvqlxL4PaxtfG8ltBfXEl1N4Ss/MvoP3JVGEmDsBLYI43An%2B6BQB2fwMD/8IHCZH8aOfPl58Wpt1Dr/ABD%2B7/d9qAO8oAKACgCjB/yHbv8A69of/QpaALYwGY9KAHDkZoAR3VFJZgoHUnoKABDkUAKTigBaAOV8Waz4vsNQEHh7wZHrNusIle5m1VLVd2SPLVdrsWAAOSFX5hz1wAYC/FW31Hwl4V1jw3ok%2BpXviidoLCymnW3COiSPKJZCGC7BE/QNkgYHNAG58PvF0/iVtZstQ0l9K1XRb0Wd7bCcTxhjGkiskgA3KVdeoBByCKAJvD3itNS8Y%2BIvC09o1reaMYHUtJuFzBMm5JV4GBuV0I5wUPPNAFPw58QdH1HR9c1/UJrfSNF03U5rCO/u7hUiuBEwRpQxwAvmb0HJztz3FADPFPxC0my8F2/ijQLvT9bsptTs7ES29yGi/fXUcDHcuRld5OPUYoA0bfxn4e1fQdV1Hwz4h0PVG06J2lZL9DDE4UsBK652LxycdMntQAXXjTw7o/hzTNW8T%2BINE0pL2GN1ke%2BQQyMyhiI3bG9eeCOowaAKlr41hu/iJp/hqwW3u7C%2B0GTV4r%2BGYOrhZo4wFxwykSZ3A9qANLR/GXhLWNXudI0nxNo9/qNruM9rbXkckse04bcqkkYPB9DQA3T/ABv4O1HxA/h%2Bw8U6NdavGzK1lDexvMCv3hsBzkdx270Aa97/AAf7w/8AQhQBYHSgBaACgCFP%2BPuT/cT%2BbUATUAFACHpQBHa/6r/gTf8AoRoAloAKAI5/uD/fX/0IUAPXoKAFoAKAGL/rm/3R/WgB9ABQAUAR2/3D/vt/6EaAC4/1En%2B6f5UAUdR/1qf7g/rQB4F8SvEHgiL4reI9D8YfE3xd4OEKWdza/YNemgil3xEOqRqhCAbFJGeWcmgD1r4My%2BHZ/BUMvhjxZqnivTjNIF1HUbx7mZ2zypdgCQOgGOKAO1oAKACgCjB/yHbv/r2h/wDQpaALZG7cuSMjscGgDhP%2BFW6d/wBDf4%2B/8Ke7/wDi6AOb%2BI/wJsvFvhK70JPG/jO3M5Qh7rWJ7yL5WBw0TvtYZHqO3pQBqeG/g7p%2BlaBYaZ/wmfjuT7Jbxwb08Q3MKttUDIRX2oOOFHA6UAbWkfDqx03U7e/TxP4zuWgcOIrrxDczRPjsyM2GHsaAO0oA8n%2BNnizVrfVLTwXp1p4gsbbUIDNqOu2Gj3N39lg3FTFCYY3/ANIbBwSMIPm5JUUAYfj7SdEuvBvgGysPDust4BsL7/Tre3025S9t1ijcW7hNouUAlALOoDkc5KsSQDc/Z90ybTpvFg07TdQsPCc%2BqLNoq6lDJHdSFol%2B0SMJR5pQyD5TJ82Ae2KAK/x5g8T6BrmmeOPBWk3mpapLZXOh3EFrFvbEyF7aZh2WOdVyeyyNQBj%2BPvA%2BqeG/D3w4t9GudVGkeF5G/tGTTrJLy5ErQlVuxA6OJCJC5OFLDzSwHHABn6v4ag1fwPrs9pL4l8SHWvEeiyX66noRsxKsd1AsjLD5MeV8sfO23GF5PBoA6Lx/o%2Bon4heMJNP0u7a1vPh3JbhoYGMc1wskwSMYGGcK5wvXBoAoeHVm8H%2BJPDHiPxFomrzWLeCrHTIJrbTZrp7C4TLTRvHErSJvDR/NtxmPBIwBQBe8V6Zq/iDx5LceHbS%2BsEv/AIfX9rZXMtq8C29zLNF5StuA2P8AxbTgjB44oAwPhdo4ub/wVYajqnjS31Lw9gx6bN4aS2t7R1t2jkRrpLdUMZBZcrId%2BVPJoA0/htdalo/ibQ/DPhRte1Hw6ks32q01nw5LZvpMex2DLdMiLIfMITbh2IYndxmgD2q96R/7y/8AoQoAsDpQAtABQBCn/H3J/uJ/NqAJqACgBD0oAjtf9V/wJv8A0I0AS0AFAEc/3B/vr/6EKAHr0FAC0AFADF/1zf7o/rQA%2BgAoAKAI7f7h/wB9v/QjQAXH%2Bok/3T/KgCjqP%2BtT/cH9aAMT/hA/DR8X6v4nv7OHULvVIreJ0vIY5Y4hCGA8vK5Gdxzyc4HpQBriO30vw9cP4b0u0m8uKSS2s7YpDHPJgkKGA2rubjd2zmgDj/APxF1XW/iHq3gbxB4Wi0XVNOsYr4tbakt7E0cjYCswRCj/AOyRyMnpjIBB8Y/iR4h%2BHdhe663guHUvDtgsJnvP7XWGZjI4TEcPltuIJHVlznjpQBkeN/jafD3j6LwrHpWip5tjbXaXOr659g3GZnAjC%2BS/zDZzlh1FAHqcEif27dgsoP2aDIz/ALUtAF5CCSQQaAHUAFACL90UALQAUAIcevegBR060AAwKAA4NACDBJoAXA45oAMCgBMDGKABcYzQAuBQAAAUAVr4gBCSANw/9CFAE/mR/wB9fzoAPMj/AL6/nQAeZH/fX86AIldBdyfOv3F7%2B7UAS%2BZH/fX86ADzI/76/nQAGSPH31/OgCO2kQRffX7zd/8AaNAEnmR/31/OgA8yP%2B%2Bv50AMnkTYPnX769/9oUAOEiYHzr%2BdADZrmCGF5pJVVEUsxz0A5NAHE/CH4r%2BEvijYajeeGJrrZp9wIJluYfLbkEqw5OVODjvxyBQB24dBK3zr0Hf60AO8yP8Avr%2BdAB5kf99fzoAPMj/vr%2BdAEcEiBD86/fbv/tGgBZ5EMEnzr909/agClqTKJUywHyDv9aAPKv2nvD9zrtpov2TxJoOjSRw6jFKdVmeNTby2rLPLHtBO%2BOLeecDBOSKAND4DaZp//CptTt/BPiGx/s2%2Bv7%2BTRrqzjaWOyjeRvLXy5ApynBKHjORkjmgCD4dfCXxR4M0fXLK1%2BIcc91qsckjaidEX7WLtjkXEkjSt5pUbgEOBz%2BYA/wAefCfxN4q8TaDrM/xBQpokMbW1nd6KtxAbtVw12U8xVMhycZB2Z49aALHxS%2BGfifx7pl34fvvHkUHh6/WAXlouixtMTGULGOUv8u5kDcqxXsaAPQrGJYdXuIkJ2paQKMnJwGlFAF5mWMMzEBRySTgCjyA5X/hZvw5x/wAj54X/APBrB/8AFV2/2bjHqqUvuYnJLchvfit8NrS0lupfHPh1o4kLsItRikcgeiqSxPsBk1rRybMK8%2BSnRk36Ml1YJXbJV%2BJvw62gnx34X/8ABtB/8VWbyrHRdnRlf0f%2BQe0h0ZY0/wCIHgXUb2Gx0/xj4evLqZgkUMGpQu7segVQ2SfYVFTAYqlFynSkkvJjU4s6auQo828aa9ruqfFGx%2BHPhzVW0VxpTaxqWorbpLKsJl8qOKIOCoZmDksynAUYHNAFzUdVvfh1o8154i8Qal4qW6uoLTSrb7HAl5LPISoiBjEcb5ODkhdoViSR0AK83xXsbDQ/Et5rvhzWdI1Dw5aJeXunT%2BU8jwPu2SROjtG4JRx97IKkEDjIBa074ivca5Lo954Q13TbuTT5tQ01LgwZ1COIqGVAshKSfOnySbSN3OMHABYtviJot1pPhLUbKG4uh4qljisYU2%2BYgMbSOzgngRqh3Yzg8dSKAMg/F3T9w1FfDest4YN%2BLAa%2BGg%2BzGQzeSHCeZ5pi835d%2BzHfpzQBq3nxI0az8O%2BKdYu7W7h/4Rq7ktLu2IUzSOArR%2BWAcESiSPZkjO4A45oAqa58TDYatqGmaf4O17Wp9ItorjWPsZgAshIhcR/PIvmybRu2x7uCO5AoAjvvipYHUtH03w74f1bxJc6xpH9r2X2Mwxo1vuVcs0roF%2B%2BvX1x1oA9CjYugYoVJHKntQA6gCve/wf7w/wDQhQBYA46mgAx7mgAx7mgCJP8Aj7k5P3F/m1AEuPc0AGPc0ABHHU0ARW3%2Bq6n7zf8AoRoAlx7mgAx7mgBk33ByfvL/ADFADxyOpoAMe5oA82/Zt0/T7X4WW17YWFrZ/wBp3t7eyGCFY/M33UpQnA5wmxR6KoHQCgD0Yf61uT0H9aAH49zQAY9zQAY9zQBHB9w8n77f%2BhGgAuB%2B4k5/hP8AKgCjqIHmp/uD%2BtAHjf7X0fhpdB0W71zUtetpY5LmMQaRapPNc2jwkXSkOQqKIxzJn5fQ5oA7r4KQ6TDo2vDSZbhw3iPUWuVnhWMxzeed6AKxG0YGDnkYJAJxQB3tABQAUAUYP%2BQ7d/8AXtD/AOhS0AW8ZJGAfrSafQaK39l6d/0D7T/vyv8AhWyxFb%2Bd/eyeVGV4o8GeGPE2kvpOt6Na3VlIys8QBjyQcjJQg9feujC5ni8LVVWlUaa63/zE4xas0WtI8OaJpemW2nWOmWsdrbRrFChTdtRRgDJyTwO5rKtjcTWm6k5ttv0GoxSskXE06wRw6WVsjKchliUEfpWUqtSUXGUm0/MaLdQBwXjjwjrMnjTT/HfhGfTotctbN9OuYL7eIb61Zw4QumTGyuCysFYfMQQc8AGf4n8LeO/FemQXmo3Hh/S9W0rU7fU9Gt7dpbiFHi3B0nlZULiRXZcqi7M5%2BY0AZXiD4ceLPFWneNtQ1q40Sz1rxBpEOkWVvbSySW9rDE8jgvKUDOzPKxOEAAAGDyaAO21zw1e33xN8M%2BJ4ZrdbTSbG/t542J8xmnNvsKjGMDyWzkjqMZ7AHLeAPhnqegfEfUdYvtQtLjQbQXP/AAjdlGDvtBdyCW535XAw6hUwThSemaAMHwx8GD4amTSoPBnw91rT4r1pYNX1G2P2%2BOBpC4R08phLIgO1X8xc7QSKAHeIdFsvFH7RVnbaNfmaxtoob3xVbpGTH59ozGxRm6by0zMV5%2BWBemOQDptZ8LeONN8V%2BJdU8G3GhSweJI4TMNReSN7C4jhEIlQIrCVSiofLJTlfvYPAA7wR8N5vC3izw9eWl7DPpmj%2BFTofz5E8snnRv5mMbQCEPfqenegD0igBaAK17/yz/wB4f%2BhCgCwOlAC0AFAEKf8AH3J/uJ/NqAJqACgBD0oAjtf9V/wJv/QjQBLQAUARz/cH%2B%2Bv/AKEKAHr0FAHNfFPU9Y0X4c%2BIdY0FbZtSstOmuLf7ScRhkQtk/QAn8MUAc3%2BzHB4ktfgf4atfFNjDZX0FqI44o2yfIBPlM/Jw5TBPPfnByAAejr/rm/3R/WgB9ABQAUAR2/3D/vt/6EaAC4/1En%2B6f5UAUdR/1qf7g/rQB5l%2B0PoHhrxjf%2BFvB%2Bt3mp6Xd6rLdx2eo2VwsJiAgzLG24EOsikLtxz%2BFAGz%2Bz7Hodv4LvLHQZ7%2B8hs9Yvbe4vr24E8t9cLKfMuDIOG3nkfl2oA9GoAKACgCjB/yHbv/AK9of/QpaALeSrHIOD3oAXcPQ/lQAbh6H8qAERxtHB/KgBdw9D%2BVABuHofyoAa8gABIPUDp70AKGGBwfyoAXcPQ/lQAbh6H8qAGLKvmsnO4KCRjsc/4GgB%2B4eh/KgA3D0P5UAG4eh/KgBscgK5Ab8qAHbh6H8qADcPQ/lQBXu8kKcEAMvP8AwIUAWR0oAWgAoAhT/j7k/wBxP5tQBNQAUAIelAEdr/qv%2BBN/6EaAJaACgCOf7g/31/8AQhQA9egoA4P9oB5T8JdasYG2y6mIdLXHX/Sp47c498SmgDuoY0iiWKNAiIAqqBwAOlAAv%2Bub/dH9aAH0AFABQBHb/cP%2B%2B3/oRoALj/USf7p/lQBR1H/Wp/uD%2BtAHkv7VbwajpXh3whJpnha4k1q%2Bk8u68RyyR2dqYoyxO6MhhIwO1cEZ5HegDV%2BAGu2kHwZadtK0yyi0OW8tZY9CV5rWf7O7bpLcHLuHwSOSSc9aAOh8C/ErQvFmvX3h%2BCz1nStYsoVuJbHVbB7aUwscCRQeq5465B7UAVfH3xc8I%2BC9bfSNVbUp7iC2W8vjZWTzpY27NtEs5X7i5%2Bp74xQBB4q%2BNHgfw3qrWF5dX10IbeG6vbqxs3ngsYZiBFJO6/cDZBHU4wcUAdvauj61cujBla1gIIPBG6WgC/keooAMj1/WgAyPX9aAGxkbetADsj1/WgAyPX9aAI5yNg5/iX/0IUAPBGBz%2BtAC5Hr%2BtABkev60AQRkfbpef%2BWSfzagCfI9f1oAMj1/WgAyPX9aAI7cjy%2Bv8R/nQBJkev60AGR6/rQBDdkeUOf41/8AQhQBMCMdRQAZHqKADI9RQBEhH2uTkfcT%2BbUAS5HqKADI9RQAEjHUUARWpHldR95v/QjQBLkeooAMj1FAEc5Gwcj76/8AoQoAepGByKAPDf2ndU8cJ4r%2BHOheEdGtdUhu9aW8uY5GwzNbMkig/MMIAWctzyq/RgD3JT6kUANUjzm5/hH9aAH5HqKADI9RQAZHqKAI4CNh5H32/wDQjQAtwR5EnP8ACf5UAUNR/wBan%2B4P60Aec/tBw6vcP4bit/Ap8b6QLqZtT0pktyrKI8RyBpeVdWbI24yNwJxQB0fgefUh8NmbSfAyeFby3hmSx0W4aNI1dQSgJiyqqzY6epoA4D4Z%2BGvipos/ibxJr2g6Le%2BMtSsyYdSl1VpISysPJtVhWNfJgALE4YsW5OcjABn/ABD%2BHHxGv/EPiXUtFstFuj408O2%2Bl6mZrtohps6rseRPlYyR7S2ACDnHYcgGX4j%2BCXjTTj4o0bwsdM1DTfFujabpdzeXty0T6ebSJYTJ5YVvMDIuQAQQx9ByAe9%2BHtKg0uVdNieV0tNNtLdWZjllTzFBPvgUAbPkx/7X/fRoAPJj/wBr/vo0AHkR/wC1/wB9GgBEhj2/xdT/ABGgBfJj/wBr/vo0AHkx/wC1/wB9GgBk8KeWPvfeX%2BI/3hQA8QR4H3v%2B%2BjQAeTH/ALX/AH0aADyY/wDa/wC%2BjQBBHChvpfvf6pP4j6tQBP5Mf%2B1/30aADyY/9r/vo0AHkp/tf99GgCO3hQx/xfeP8R9aAJPJj/2v%2B%2BjQAeTH/tf99GgCK7hTyh9776/xH%2B8KAJfJT/a/76NAB5Mf%2B1/30aADyY/9r/vo0ARJChu5PvfcX%2BI%2BrUAS%2BTH/ALX/AH0aADyY/wDa/wC%2BjQAGFMfxf99GgCO2hQxfxfeb%2BI/3jQBJ5Mf%2B1/30aADyY/8Aa/76NADJ4U2D733l/iPqKAHCGPbn5v8Avo0AefqE1b9oIqhV4fD3hwrL82Sk95OpA9iEtD%2BDj1oA9B8mP/a/76NADRCnmt97oP4j70AO8mP/AGv%2B%2BjQAeTH/ALX/AH0aADyU/wBr/vo0AMghQofvffb%2BI/3jQATwp5En3vun%2BI%2BlAFPUlBmTOfuDv9aAPmf9ovwx421L4palrWjeAtb1y8trawHhzVrW/EKadJE5klxHnDli2DmgD6K%2BHmu6x4i8Nx6lrnhi68M3rSOjWFzMsrqAcBtygDB60AdFQAUAFAFGD/kO3f8A17Q/%2BhS0AXqACgAoAanT8TQA6gAoAjuP9WP95f8A0IUAPHSgBaACgCvF/wAf0v8A1yj/AJtQBYoAKACgCK2/1X/Aj/OgCWgAoAhvP9UP99f/AEIUASjpQAtABQBCn/H3J/uJ/NqAJqACgBD0oAjtf9V/wJv/AEI0AS0AFAEc/wBwf76/%2BhCgB3VMZxxQB4l8AvAOmQfEPxx8Ura8vnfWdXvbO2haQGEwxz4eTpkkyxvt5wF45zmgD2%2BgBi/65v8AdH9aAH0AFABQBHb/AHD/AL7f%2BhGgAuP9RJ/un%2BVAFHUf9an%2B4P60AcV4v8Y/EjS/EF3ZaF8JJte02Ip5OoDX7a2E2UUt%2B7f5hhiV5/u5oA6jwLqmuavoa3niHw4fD1%2BZHV7I3sd0VUH5W8yP5Tkdu1AG/QAUAFAFGD/kO3f/AF7Q/wDoUtAF6gAoAKAGp0/E0AOoAKAI7j/Vj/eX/wBCFADx0oAWgAoArxf8f0v/AFyj/m1AFigAoAKAIrb/AFX/AAI/zoAloAKAIbz/AFQ/31/9CFAEo6UALQAUAQp/x9yf7ifzagCagAoAQ9KAI7X/AFX/AAJv/QjQBLQAUARz/cH%2B%2Bv8A6EKAOJ%2BO%2Br6xoPwh8R6t4evY7LVbezJtJXjD4kLABVU5Bds7Vz/EVoAZ%2Bz94f8R%2BFvhFoOgeKza/2tZxMkwt8FVG9ioJHBbaRkjqc9etAHe0AMX/AFzf7o/rQA%2BgAoAKAI7f7h/32/8AQjQAXH%2Bok/3T/KgCjqP%2BtT/cH9aAPIP2uvCNx4p8J2BfUdPtdOshdSSpe6gLSKS4MWLfLEgE7wRgnjfntQBtfs3aa3hX4TyJqlhp2gW8d9e3JtYtRW6Sxh81j5ck4JVmQAgnPGOec0AegeGPE3h7xRYy33hzWrDV7SKUwvPZzrKiyAAlSVJGcEHHuKAMrxB8SfAHh7VZdJ13xloWm38QUyW91fRxyKGAIypORkEGgB2qfEbwHpesro2peMNDs9SbZttZr2NJTvAKfKTnkEY9c0AbkH/Idu/%2BvaH/ANCloAvUAFABQA1On4mgB1ABQBHcf6sf7y/%2BhCgB46UALQAUAV4v%2BP6X/rlH/NqALFABQAUARW3%2Bq/4Ef50AS0AFAEN5/qh/vr/6EKAJR0oAWgAoAhT/AI%2B5P9xP5tQBNQAUAIelAEdr/qv%2BBN/6EaAJaACgCOf7g/31/wDQhQBwHxMJ1nxj4K8HoSUm1A6xe47QWe10B9jO9v8AkaAPQlGKAFoAYv8Arm/3R/WgB9ABQAUAR2/3D/vt/wChGgAuP9RJ/un%2BVAFHUf8AWp/uD%2BtAHg37Xy6B4k0%2B10m28Y%2BC4Na0pplm0rWtUjh4ng2rIAT8sqBg6FhjnOelAHc/BVY7b4W6nql9f6T4hfUb2%2B1O9j0NvtdsWldneCLGfMPbHck0AcF8BNd1Pwh4d%2BIk8/w98YiSXxDeazY2f9jSwtc28rRIiR7gAZMZOwdgTQB1vxn0HUvHPjHwh4Ni0a5GgyzjVfEN6YMRGGD/AFdqzkYYvJjK5yAuelAHE/GDS9fsviRq%2Bt/Duy8dL4wv7qwhEX9mRyaLcRRqo3PKyEBQpcEl1IbtjBoA%2BhIopW1%2B8b7RKgNtB8oC4HzS%2BozQBd8mX/n7m/JP/iaADyZf%2Bfub8k/%2BJoAPJl/5%2B5vyT/4mgBscMu3/AI%2B5vyT/AOJoAd5Mv/P3N%2BSf/E0AHky/8/c35J/8TQBHPDJ5Y/0ub7y9k/vD/ZoAeIZcD/S5vyT/AOJoAXyZf%2Bfub8k/%2BJoAPJl/5%2B5vyT/4mgCCOGT7dL/pc3%2BqTsnq3%2BzQBP5Mv/P3N%2BSf/E0AHky/8/c35J/8TQAeTL/z9zfkn/xNAEdvDJ5f/H3N949k9f8AdoAk8mX/AJ%2B5vyT/AOJoAPJl/wCfub8k/wDiaAIbuGTyh/pc3317J/eH%2BzQBMIZcf8fc35J/8TQAeTL/AM/c35J/8TQAeTL/AM/c35J/8TQBEkMn2uT/AEub7i9k9W/2aAJfJl/5%2B5vyT/4mgA8mX/n7m/JP/iaAAwy4/wCPub8k/wDiaAIraGTyv%2BPub7zdk/vH/ZoAl8mX/n7m/JP/AImgA8mX/n7m/JP/AImgCOeGXyx/pU33l7J6j2oA4DwIj698UfGPiYzuYdOeLw9YuFX5lhXzp2HGP9bNsOP%2BePqKAPQ/Jl/5%2B5vyT/4mgA8mX/n7m/JP/iaAGCGTzW/0uboOye/%2BzQA/yZf%2Bfub8k/8AiaADyZf%2Bfub8k/8AiaADyZf%2Bfub8k/8AiaAI4IZNh/0ub77dk/vH/ZoAWeGUQSf6VKflPUL6fSgCnqaOZkxKy/ux0A9/agDxD9pK18H/APCTaVqVpf8Awxh8S2Fx51/p/ibyk%2B3RNFsQuw%2BclBgqDx0P8IoA7f8AZr06LT/hmiRan4cvhcX91dH/AIR8g2FuZJSxhiPdVzjnkdOwoA9M2igA2jOaAFwKAKUH/Idu/wDr2h/9CloAvUAFABQA1On4mgB1ABQBHcf6sf7y/wDoQoAeOlAC0AFAFeL/AI/pf%2BuUf82oAsUAFABQBFbf6r/gR/nQBLQAUAQ3n%2BqH%2B%2Bv/AKEKAJR0oAWgAoAhT/j7k/3E/m1AE1ABQAh6UAR2v%2Bq/4E3/AKEaAJaACgDF8ca3beG/CGq%2BILsjyNOtnunGeoQbsfU4x%2BNAGb8IdEudA%2BHOjWGoFjqLwtdX5Yc/ap3aab/yJI9AHWUAFADF/wBc3%2B6P60APoAKACgCO3%2B4f99v/AEI0AFx/qJP90/yoAo6j/rU/3B/WgDy740%2BHtG0%2B/k8Z6ve%2BAVglEcBh8U6LDKjMAcLHOMSgkDofMAxwBQB13wluY30a6s7fwvougQWd1JD5ej3MUtpJKrESbdioVIYEMGRSDQB2tABQAUAUYP8AkO3f/XtD/wChS0AXqACgAoAanT8TQA6gAoAjuP8AVj/eX/0IUAPHSgBaACgCvF/x/S/9co/5tQBYoAKACgCK2/1X/Aj/ADoAloAKAIbz/VD/AH1/9CFAEo6UALQAUAQp/wAfcn%2B4n82oAmoAKAEPSgCO1/1X/Am/9CNAEtABQB518Z2GqT%2BF/BKbWGuaxE94mMn7Hbf6RKfYF0hjJ/6a%2B9AHoi9KAFoAKAGL/rm/3R/WgB9ABQAUAR2/3D/vt/6EaAC4/wBRJ/un%2BVAFHUf9an%2B4P60AeK/tn6Tp174N0u9uvFGg6HcwS3FvAusq7QzieIxuVCBmEiL8ysFOD160Adf%2Bza9rcfDltTg1%2Bw16fU9Rur68urCJ47YXEkhZ0jWTDbVJABPXr3oA9LDZPSgBScdqAE3dPegCnB/yHbv/AK9of/QpaAL1ABQAUANTp%2BJoAdQAUAR3H%2BrH%2B8v/AKEKAHjpQAtABQBXi/4/pf8ArlH/ADagCxQAUAFAEVt/qv8AgR/nQBLQAUAQ3n%2BqH%2B%2Bv/oQoAlHSgBaACgCFP%2BPuT/cT%2BbUATUAFACHpQBHa/wCq/wCBN/6EaAJaAEoA8R8AeOtC8eftF%2BJ4rN7oTeGNPXTLaOWIqrE3P%2BlSA8/xR26jOCQCcdaAPbl6CgBaACgBi/65v90f1oAfQAUAFAEdv9w/77f%2BhGgAuP8AUSf7p/lQBR1H/Wp/uD%2BtAHiH7XutW%2BiXXge6k8Qaf4bkF9c7dXuNMa/a2HkYIEIBVg24A5BI%2BUjoSADrvg5quna98G7i%2B1LxnbeItOYXSXeqw2LaUgiAIf5QEMe1c/PweM54oA89/Zj8eeCfDXhH4iveeJ7Yabpfie%2BuoR9pe6kj0/MKRSqAWkaMkgBhkEnrQBiftKSaNpXjvVvGTa14Y1q8ht7GKLwxd3dxHevlvvQrFKnzMJAeVcfKOnNAGF8adcuj4u%2BI93qmr6rpviqy/sY%2BCrNbySKQCQr5ggjUgSktuD8NjBoA%2BuLYXJ1u6JaJT9lgJG0/3pc9/XNAF7bc/wDPSL/vg/40AG25/wCekX/fB/xoANlz/wA9Iv8Avg/40AIi3G3/AFkX/fB/xoAXbc/89Iv%2B%2BD/jQAbbn/npF/3wf8aAGTrcbB%2B8j%2B8v8B/vD3oAeEucD97H/wB8H/GgA23P/PSL/vg/40AG25/56Rf98H/GgCCNbj7dLiSP/VJ/AfVvegCfbc/89Iv%2B%2BD/jQAbbn/npF/3wf8aADbcf89Iv%2B%2BD/AI0AR263Hl/6yP7x/gPr9aAJNtz/AM9Iv%2B%2BD/jQAbbn/AJ6Rf98H/GgCK7W48ofvI/vr/Af7w96AJdtxj/WRf98H/GgA23P/AD0i/wC%2BD/jQAbbn/npF/wB8H/GgCJVuPtcmJI/uL/AfVvegCXbc/wDPSL/vg/40AG25/wCekX/fB/xoACtxj/WRf98H/GgCO2W48riSP7zfwH%2B8fegCTbc/89Iv%2B%2BD/AI0Acv8AE7xJe%2BF/Cct5ZRwXeq3MqWWlWjAgXF3KdsSE7hhc/MxyMKrHtQAz4feCrPwb4cgs7VbWXUZNj6jqJgAnvpyxZ5ZWByxLMx5JxnA4oA6sLcY/1kf/AHwf8aADbc/89Iv%2B%2BD/jQAbbn/npF/3wf8aAGhbjzWxJH0H8B9/egB225/56Rf8AfB/xoANtz/z0i/74P%2BNABtuP%2BekX/fB/xoAZAtxsP7yP77fwH%2B8fegBZ1uPIk/eR/dP8B9PrQBT1MSecm11H7sZyv196APJfGdzresfEXxDoVj8YG8I/2f8AZLhILnS7SSMJLERsjaRtz/NGzEkDBbHIoA9F%2BGdneWvhRbbU/FsPi%2BYyPu1FLeKJZAT9zZGSvHSgDolsrNQwW1gAYYOIxyKACSys5J0nktIHlT7rtGCy/Q0ALLaWssyTyW0Lyx/cdkBZfoe1AEEH/Idu/wDr2h/9CloAvUAFABQA1On4mgB1ABQBHcf6sf7y/wDoQoAeOlAC0AFAFeL/AI/pf%2BuUf82oAsUAFABQBFbf6r/gR/nQBLQAUAQ3n%2BqH%2B%2Bv/AKEKAJR0oAWgAoAhT/j7k/3E/m1AE1ABQAh6UAR2v%2Bq/4E3/AKEaAJCQOtAHm%2BisfG3xYu9b5fRPCTSWGnn%2BGfUGXFzMPURqRCPRjNQB6LN/qx/vr/6EKAHr0FAC0AFADF/1zf7o/rQA%2BgAoAKAI7f7h/wB9v/QjQAXH%2Bok/3T/KgCjqP%2BtT/cH9aAPPde%2BCfg3xR8Q9b8W%2BMtLs9aW%2BgtYrWGYOptvKVg5yGGd2V7cbaAO68G%2BF/D/g/RE0XwzpkOm6ejs6wRElQzHJPJJ5oA2qACgAoAowf8h27/69of8A0KWgC9QAUAFADU6fiaAHUAFAEdx/qx/vL/6EKAHjpQAtABQBXi/4/pf%2BuUf82oAsUAFABQBFbf6r/gR/nQBLQAUAQ3n%2BqH%2B%2Bv/oQoAlHSgBaACgCFP8Aj7k/3E/m1AE1ABQAh6UAR2v%2Bq/4E3/oRoA4j4weNrfw1pEOkadqFmvirW3Wy0W1kkG55pGCCXb/cTdvJ6fLjqRQB0Xgjw7Z%2BFPC2n6BYF2gs4QnmOcvK55eRj3ZmLMT6saANaf7g/wB9f/QhQA9egoAWgAoAYv8Arm/3R/WgB9ABQAUAR2/3D/vt/wChGgAuP9RJ/un%2BVAFHUf8AWp/uD%2BtAHmv7RcPj57XR38DTSh3W8trhY9RW18sy25WO4JYgMIjufAyRgEDigDb%2BAtnqFh4Luba91S41S2TVLsabdXF8t5JJZiUiEmUMd3GSMnIBwQOlAHoFABQAZoApQf8AIdu/%2BvaH/wBCloAvUAFABQA1On4mgB1ABQBHcf6sf7y/%2BhCgB46UALQAUAV4v%2BP6X/rlH/NqALFABQAUARW3%2Bq/4Ef50AS0AFAEN5/qh/vr/AOhCgCUdKAFoAKAIU/4%2B5P8AcT%2BbUATUAFACHpQBj6/r%2BleGfDt1retXa2tja7mkkIJJ%2BYgKqjlmJIAUZJJAFAHmNh8LLb4g%2BMNO%2BJvxDsri21azkjk0fS0kCrYwRsXiWYj78pYl2GcA4UZAOQD2agBk/wBwf76/%2BhCgB69BQAtABQAxf9c3%2B6P60APoAKACgCK3%2B4f99v8A0I0ALcf6iT/dP8qAKOo/61P9wf1oA8b/AGvrTTv%2BEe0bVNR8W6f4fiia6sX%2B1W8s5mjuoTFJ5SRZYyKuSOMcnOBQB1fwa0LTdO8D6/pPh/VEgtH1rU1gNjCY/wCziZWXy1WRMBoyO6lc%2Bo6gGB%2Bzl4mvj4Z8cSeLvFEt7Doniy9sI7/U5kQpbxiNU3thVHJJ6Dk0AUfjzqHiC18S2dn4H8c64fGOoPC2m6FAsDWUUAYCWe5Bj3CLaHO5n5OAoODQBj/GjVfG/hHxxq3jHV9U8QJ4Ft5rCKNNH1e3ieAkKspaB42aQF2HyhkPU9DkAHvsErf29eAQyEC2g5BGD80vvQBe8x/%2BeEn5r/jQAeY//PCT81/xoAPMf/nhJ%2Ba/40AIkjbc%2BRJ%2Ba/40AL5j/wDPCT81/wAaADzH/wCeEn5r/jQAyeR/LH7iT7y91/vD3oAeJGx/qJPzX/GgA8x/%2BeEn5r/jQAeY/wDzwk/Nf8aAII5G%2B3S/uJP9UndfVvegCfzH/wCeEn5r/jQAeY//ADwk/Nf8aADzH/54Sfmv%2BNAEdvI3l/6iT7x7r6/WgCTzH/54Sfmv%2BNAB5j/88JPzX/GgCK7kfyh%2B4k%2B%2Bvdf7w96AJfMb/nhJ%2Ba/40AHmP/zwk/Nf8aADzH/54Sfmv%2BNAESSN9rk/cSfcXuvq3vQBL5j/APPCT81/xoAPMf8A54Sfmv8AjQBh%2BOPGOgeCvD02veKL1dN06EqrzSfN8zHAUKuWYnngAnigDiPA8Nz8RtVs/HuqwSf8I3bsZvDOntj94STi/mB/jIJ8tT9xfm%2B83ygHqfmP/wA8JPzX/GgA8x/%2BeEn5r/jQAyeR9g/cSfeXuvqPegB6yPj/AFEn5r/jQAeY/wDzwk/Nf8aADzH/AOeEn5r/AI0ANEjea37iToO6%2B/vQA7zH/wCeEn5r/jQAeY//ADwk/Nf8aAGXEk/kSeTA3mbTs3EYzjjODnFONrq%2Bwntoec/s6T%2BJpvhwlz4m1D%2B1bme%2BunjnXhtnnMCrZP8AeDYxwFIHavb4mWEjmDjhI8kUrW87bkUb8r5j0a4kbyJP3Lj5T1K%2Bn1rwzQp6kxEqfIx/djpj3oA8x/aO8JW3jaXw74dt/ED6Lr179tisXNoLiOWJrcrcI4JG35MYYHIPQUAbPwb0XS/%2BEG1nRbjU28QyzatqEOuTz2ogWe6aRhOojBIVOcAAnIoA0tP%2BEvw3061vbWx8F6NbwX8PkXccduAs0e4NtYdxuVT%2BFAEviP4W/D3xHqz6trvhDSNRv3RUa4ngDOVUYUE%2BgAAoANU%2BF3w%2B1TxGviLUvCGkXeqKUP2iW3DElAFUkHgkBVAJHGBQB0kH/Idu/wDr2h/9CloAvUAFABQA1On4mgB1ABQBHcf6sf7y/wDoQoAeOlAC0AFAFeL/AI/pf%2BuUf82oAsUAFABQBFbf6r/gR/nQBLQAUAQ3n%2BqH%2B%2Bv/AKEKAJR0oAM0AAOaAIUP%2BlSH/YX%2BbUASlgFLHoOtAHn2pfFfQLqd9K8Dj/hM9c3FfsmmSq0UBBILTz/chQEY5JY/wq1AGfffCxvHVo8nxY1A62snMWkWM0tvp9mecFdpDyuMn9457nCr0oA9C8NaZY6LodppGmWyW1jZRiC2hTpHGvyqo%2BgFAGjQAUARz/cH%2B%2Bv/AKEKAHr0FAC0AFADF/1zf7o/rQA%2BgBD0pO/QDP8AEOrWOhaHe6xqUwhs7OB55nPZVBJ%2Bp9B3rXD0ZYitGhTV5SaRM3aLOH/Z1bXU%2BGsFt4h0G40a7iurgpDMysXjkkaVW4Jx98qQcHKnjmvZ4njh/wC0Jyw9Tni0tfO1rCpNuOp6Lcf6iT/dP8q8Iso6j/rU/wBwf1oA8r/ahtYNWsvDWg2WhatqniW8vZX0htM1VdOmt/LjJmf7QwYKNhwVIOc8cgGgDc/Zv/syP4aRWOn6Pe6RNYXtzaajbXl2LqcXiSkTM8wAEhZudwAHPAAGKAPSqACgAoAowf8AIdu/%2BvaH/wBCloAvUAFABQA1On4mgB1ADJd5Q7CA2OCaAPD/AIceFv2grGz1JPE/xG0B5Hvd1v5%2BktenZnqCskOwE/wYbGOo6UAdn/YfxcPT4ieFv/CTk/8Ak2gA/sL4u/8ARRfC/wD4Scn/AMmUAH9hfF3/AKKL4Y/8JOT/AOTKAII9B%2BLX2yUD4jeGwfLTJ/4RV%2BmW/wCnz60ATf2B8W/%2BikeG/wDwlH/%2BS6AMrxf4b%2BNs/hnUIdG%2BJPh4ag8JFvs8PNbnd6CQ3EgQ%2B%2BxsUAQeBPDHxxtvCWn2/iD4l6J/aSRkT79B%2B1MOTgGUTRhyBgZ2D8epANiDw98VzHx8S9FX5j08L%2B//AF80ASf8I58VT1%2BJ2kj6eGF/%2BP0Acdpfg/8AaA/4WbqV1e/E/T18OtbgWzLpiPluOBAeEI%2BbLbznj/gIB1dz4V%2BJRjG/4r4G9fueHrf1HqTQBKPB/wART974uXuP9nQrMfzU0Acr8U/hf8VPEXhoafo3xl1KC5%2B0JIS9pFaKyjOR5luqyDrnGSDjBHcAHUWHgLxcllBHd/F/xdJKkaq7RWunKrMByRm2Y/mSfc0AchqHwV8V33xUs/EM/wAX/FkmlwWflTQCVYLh87vlVoVSMLnBJ2bvfOCADs3%2BD/gWcBtTsdT1d%2B51PWbu7B%2BqySlT%2BVAE/wAKPhd4R%2BGcGoweFLKa3XUZxNcGWYyHgHYgz0VcnA68nJNF29wO4PSgCO1/1X/Am/8AQjQA/NJWeoC0wI5/uD/fX/0IUgHA8dalvW1wFDDFO9tLjAn3ouxDFP71v90f1od%2Bug7MDNGGIMi5UZIz0H%2BRVKMnsI5TxD8TPAWhSSwal4q0xLiIEvbxTebMoHXKJlv0r0MLk2Pxf8Kk2JzUTxq98R6r%2B0FqyaDoiaxofglV8xtUWyEhuLuJwwRjuwqYKsARkkDPBr66pltPhmjKrWcZ4iWnK2/di09Uu/Q5VV9tKy0sfRlijLABIwZwSGYDGTk5r8/aXO5nWtCW4/1En%2B6f5VQFHUf9an%2B4P60AeR/tSPoLr4TtfE%2Bgalq2jyX0zTyaXbTyXtoyx/JJE8RGwZIDA5yDwMrQB2vwOTwnF8PbODwVpV9pejRSSJHBewSRTF92WdhJ8xJJJyetAHc0AFABQBRg/wCQ7d/9e0P/AKFLQBeoAKACgBqdPxNADqAGPu2nAye1Ltd2GeUeHfDPxid9Rl8ReP7KwWW9MtpDp9pHcrHGz52EyxKw28AcnI9Mc%2B9i8blfuLDUL2ilJybV5W1atLZsyUZ3d2bw8L%2BPu3xRusf9gW0/%2BJrjWMwv/QOv/Apf5j5ZfzC/8It4%2B/6Kld/%2BCW0/%2BJp/XML/ANA6/wDApf8AyQcsv5g/4Rfx7/0VG7/8Etp/8TR9cwv/AEDr/wACl/8AJByS/mIY/C/jz7ZKP%2BFoXgPlpz/Y1p6t/s0/rmF/6B1/4FL/AOSDll/MTf8ACLePf%2BipXn/gltP/AIml9cwv/QOv/Ap//JByy/mKHiDwr8UDot0NG%2BJrSagYyIFutLto4i3%2B0yRlh%2BArfDY7Lo1YvEYdcl9bOV7eXvCcJW0kReFfCfxUj0Czj1/4nGPUUTbMLXTbeaM4JAId41YkjBOR1J69arF5hlsq0vq2GXJfS8pXS/8AAgUJ21Zow%2BFvHezj4pXoG4/8wa09f9ysPruE/wCgeP8A4FP/AOSHyy/mJP8AhFfHn/RUr7/wTWf/AMRR9dwn/QPH/wACn/8AJByy/mOcsPCXxlHja9lu/iTAugPCqW7R2cLXO5eQWjMPlrks%2BSpzgJnOK76mYZN9UUaeGftr63cuW3/gV7k8lS/xaG/ceFfHHlru%2BKOokb14/sez9R/sVwfXsL/0DR/8Cn/8kU4y/mJP%2BEV8c/8ARUtSx/2B7L/43R9ewv8A0DR/8Cn/APJByy/mMLxv4O%2BLlxpKReGPieTeGZGc31jBCgRTngxRFs5A46EZBrtwOY5XGo/rWFvG2nLKV7/OVrEyjO2kjZsvCvj82sRu/ihfrPsHmCPSrNlDY5wTECRnOOBXLPH4LmfJhVbzlO//AKUNRlbVgnhXxt9of/i6Gq52LyNKsvVv%2BmVT/aGE/wCgWP8A4FP/AOSHyS/mJH8KeNipx8UdWJ9P7LsR/wC0qFmGDvrhY/8AgVT/AOSDkl/Mc94H8G/F6CG8XxV8UGDvOZLc6faW8oCsSSG82DIwegXjHYYrvx2Z5TJx%2BrYRLTXmlPfytJExjU%2B1I6T/AIRPxjjn4p63%2BGmWH/xmuH%2B0cJ/0CQ/8Cqf/ACY%2BSX8xHB4S8XmPP/C0de%2B83TT7D1P/AEwp/wBo4X/oEh99T/5MfJL%2BY53xF4L%2BLUviLSJdH%2BJ850qF918LmC3SZgeCECW%2BxsKSQHyM46YzXbhs1yhUJ%2B2wa5%2BlpSsvX3rv5NEuFTm%2BLQ6UeDPExUbvih4n/C2sB/7b1xf2lhn/AMwkPvqf/Jlckv5hkvgnX9oLfE/xYfmXpHYjuP8Ap3pf2lh/%2BgWH31P/AJMXJL%2BYo6/4B8Wy6RdJo/xR8TpqDRkW73QtfKVvVgluGI%2BhH1FaYfNcLGtF1cHBxW%2Bs7/L3rffcUqbtpIg8J/DbxJB4etLbxH8SfFVxqESbJXsrxI4mAJC43R7/ALuMkknOeavFZvhalaUqGEhGLel%2BZv7%2Ba34CVJpayNMfDWIk%2BZ438dP9dbdf/QQK5Xma/wCfMF/263%2BbL9n5ip8NdO807/E/jWTgdfEd0PX0cUv7WqLanD/wCP6ph7NHO2vwN0eTx3c%2BIdc1nUvENhLCIU0vVppLqOMLgod8jktglyAcgb2wBXfV4jqzwsaEKMISW8oxSl%2BCX4WIVBKVz0rSfDug6Rpx07SdF0%2Bws2BDQW1ukcZz1yqgDmvGrYvEV589Wo5Pu229DXlRasNOsNPiMNhZW9pGW3FIYwgJ9cDvWVarOs71ZOT83f8AMa02Jbf7h/32/wDQjUNXAW4/1En%2B6f5UAUdR/wBan%2B4P60AfMX7SHizxDpPxV1Gaz1DxrbXWkWthJoVtpMLvYXLly1x9pABD5UhR9KAPoLwj4sTxp4Km1zwza3NlNIssdqur2rxESrwC6Z3bN2M4IJFAGB8APGviPxnpPiY%2BJ00wX2i%2BIrrSA1hC8cciwqnzYd2OSWbv0xQByXxV%2BL/jDQvEXjQeG7DQ30nwRbWM%2BppfLI096bg7ikTKwEeI88kNyOlAGb4u%2BO/iqC68Wa34d0rR28NeEI9NkvobxZPtd6LoKzeW6sFj2qwHKtkjPfAAPdYryJdauW2zENawEFYXYfel9BQBc%2B2xf3Lj/wABpP8A4mgA%2B2xf3Lj/AMBpP/iaAD7dD/cuP/AeT/4mgBsd9CVJC3B5P/LvJ6/7tADvtsX9y4/8B5P/AImgAN7D3S4/8B5P/iaVgIbq/t1jG4Tr86Dm3k7sB6UWVrASrew4Hy3H/gNJ/wDE0WQC/bIv7lx/4DSf/E07IBPtsP8AcuP/AAHk/wDiaVkBWi1C2OpTxr55ZYYyV%2BzvkAs4B6ex/KiyAsi9hPRbj/wHk/8AiaLIA%2B2Rf3Lj/wABpP8A4miyADewj%2BC4/wDAeT/4mjlV7gRWt9btDlRcEbmHFvJ2Y/7NOyAl%2B2Rf3Ln/AMB5P/iaLIBftsP9y4/8B5P/AImlYCvfX9skKlxOo8xBzbyDksAO3rTsBOL2Hslx/wCA8n/xNAC/bIv7lx/4Dyf/ABNKwCG9h/uXH/gPJ/8AE0wIY9QtjeyoBOWEaEj7PJkZLe3tQBN9thPGy4/8B5P/AImlYA%2B2Rf3Lj/wHk/8AiaSjYAN7Dj7lx/4Dyf8AxNOwENnf2zwbkE7De44t5OoYg9qOVATfbIcfcuP/AAGk/wDiaLAH2yH%2B5c/%2BA8n/AMTRZARXF/brEpInALoM/Z5O7AelFkBKLyHA%2BS4/8BpP/iaLAH2yL%2B5c/wDgNJ/8TRyoA%2B2wj%2BC4/wDAeT/4mhJIBi31uZmAW4yFBI%2Bzye/%2BzRyoB4vYc8LcH/t3k/8AiaLa3AX7bF/cuP8AwHk/%2BJpgH26H%2B7cf%2BA8n/wATQBFbX8DRsVE5G9x/x7ydmPtQA6e9jaBwsdwSVOP9Gk9P92gCrqzyLOgWKVv3YyUhdx1PcCgDVUbRgUAQalam80%2B5tFuri1aeJoxPAwEkRII3ISCAwzkEg8igDzTwv8E9M8OaZr%2Bn6b448bxprsjz3Ug1CJJEuHZWeeNkiUrIdgBPIwTxzQBP43%2BCnhfxZrl7ql5qOuWg1SCC31i2tLpUh1OOFgYxMCpORgDKlSRx3oAh8V/Arwb4h1u/1Ca51iytdVW2XVtMs7kR2moC2x5IkXaWG0AD5GXp680AeR%2BAfH/ja9vPA/jS78QalPceJ/FdzpF/4ffZ9mtbZS4XYm3cjR7QxbOTnnryAfV1AC0AeKfFG51jR/2hvhu1r4p1hbDWrm7hu9L%2B0KtoFitty/IACSWO4liecYxQB594k8eeM11vxT4wi8U39vNoPjmHw/aaAhT7NdWpdVIaMrkyOCzB85G049gD6rXpQBX1NWk0%2B4jS6a0d4mVZ1xmIkEBhnjjrzxxQB8yReKfF%2Bit4/wDEfg3xbrXijwjo3h%2BXZe6yyTLLqqMctbEKN0SL97A2ZB68EAHR/AfXfEUPxJ0zw9feKdR8R2OseCbbxFO97IsjW13JIqsEIUbY2DZCHpgUAfQNAHF/GDT9S1HwsU0i58RLeROJEt9D1CGzuLkdCvmS/KFGdx5Gdo69CAeBeCPGni3xhonww8K33jvUrM6xLrEerahaFIrvfaKGig80rglQw3MB8wHfmgD2P9l/xXrXjT4MaLr3iC4F1qDtPBJchNnniOZ41kwOMkKM475oA9NPAoA%2BXf2jPi1daf8AE3TdE0/xRLoFnoes6fHqMSb1e%2BWUiSUkgcwpHgEdWZzwdtAFLxd8QPFy33ivxvYeLL6J9C8W2ujafoSFfs1zaOVyXj27meQMWDZyNpx0oA%2Brl5HIxQBFqDFbKZlbYRGxDZxjg857UAfKHhrxV46%2BHCappnjO88QXnit/CN7qlhNNry6hYvJEhkyYdg8tht4O5geQDzQB13wN8SeJYPilonh288V6h4jsNe8FQeIrk3rrI1tdO6qfLKgbYiGwEPTAoA%2BiKAPH/wBqPxN4m0Hw/wCGtN8LPPBd%2BINeg0t54ZUidUkVjsWRwwjZiAA%2B04AbAzQB5p4e8a614r1Lwf8AD2HxD4o0KKfWdX0/W75tQjmvPPs4lkWGK68sBkJcHdtBOMc4yQD1v9mHxRrfi/4R6fq3iC4N3epcXNqbvaF%2B1JFKyLJgcZIABI6kE0AenmgDwP8AaL07Vv8AhLfDmmeF/G/izT/EXijUY7eG0tdSaO1trWJQbicRgfwqBxnkvn2oA4z4jePPG2n3Pj3xfZ%2BI9Tt7nwl4is9K07QAy/Z7qB9gbzI9pZ2lDMwbORjj2APq5SSoJGPagCO7lSC2knkcIkal2Y9AAMk0AfGngX4k/EbSjDrereINVuxqnhvWNRsVvJY7m21Se2DNG0ESKGtVVBuKvjdgjGaAPSPgr4i8T23xO8MaJeeKNS8R2XibwbHr979tkST7LclgCYyqjZHzs2dM%2B9AH0TQB5t%2B0NN4wh8GWR8HjVMtqkC6qdK2fbhYfN532fdx5n3cd8ZoA8O8LfEHxt4hTSPBNxrWv6Zp1541u9G/tmVo01AWsMIkjgeQAqJiW2lhzxj1oA9j/AGZPE2ueJPBmrx69dyahLo%2BvXmlW1/IoD3kEJXZIxAAY/MVJHXb65oA9L1q0e/0i7so764sHnhaMXVuVEsORjepYEbh1GQRQB8s2Pj7xlof7OHirUIPEt/d6nbeMJtIh1O9k8%2Ba2tjLHGHJIxkAnHGAWzQA7xX478a%2BEp/F3gbT/ABPqeoWlp4j0bTINdumSW6sYL2NnmLSbdrFSoUFh8u/1xQB6r8BNY1t/FfxA8Halq99rdj4b1KGGw1G9ZXmZZIt7RO6gByhHU8/NzQB63QAUAFABQAUAFAHMWPgDwZY%2BK5fFVn4a0uDW5mdnvUt18wswwzZ7MR1YcnuTQB01AC0Ach4o%2BGXgHxPrB1jX/Cml6jqBUKbieHc%2BAMAZ9qALF14A8G3Xi6PxZc%2BGtLm1yMqy3r26mTcowrk92A4DdR2oA6egCG9toLy0mtLmJJYJ42jljYZDqwwQfqDQBynhz4X/AA%2B8OXcl3ofhHSbCaSFoHaGADdG33kI6EHuKAL3g7wN4R8HNcN4Y8PadpLXOPOa2hClwOgz1wM8DoKAOjoAwPGfg7wz4xs4bXxLo1pqcUDl4ROmfLYjBIIwRxQBR1H4beBdQ8N2nhy78KaRJpNm262tfsyqkJOclMYKk5OSOuTnNAHK%2BM/iRbfDLVNI8KWvw51h7C7uItO0d9Pa0jt5pGQERorSqUxyPmCjIPPQkA6S4%2BJnhLS5dPsfFGrWPhvWLyJJP7M1C7iE8W44AbaxUZPAOcH1oAg8Z%2BJvhlPr1h4X8VazoL6nHdQ3NrY3c6%2BYk4OYWwT8rc/LnrnigDE8JWngbxt8SfEurzeC9PTXPDGqLZf2hIiu8zrGrLL0HK7sAnJGOCKAI9U%2BOvh6w8GeNfFD6Rqj23hHWm0e8iUJvmlEqRlk%2BbG3Lg84PB4oAs3Hxn8C3mv8AiLwglz5mraVbMzW1wUSO7PkvI0aMSfuhCG3AAe4oA47wvrfw88L388mg/DjSrC6vPAx8TTSR3EOww5wbXzCCgQn%2BIHYeuMc0AdB4P8RfBTwN9mNoPDvhTVdZtra4ltkZd581A6JvUYK/NxtO3uKAO1tviR4FufEkvhu38U6VLq8Ukkb2a3C%2BYHjzvXHdlwcjqMGgDzjXvjD8MfHngHWHXTbXxBBYXqQTabqMsUG79%2BkQnVmJULl8qchj0ABNAG7q9p8DUaz%2BF%2BoxeFUeGYG20dygdJn5GB1Dtn13NnvmgDb0Xxz8MdHvrbwXpXiDQbG4t7g6dBpkMqxmOVTgxBOxzxjufWgDR%2BJXjGHwZoNtftYtf3l9f2%2BnWFmkojNxcTOFRAzcAdSSegU0Acfc/EPwEPiVczalpU1rqOmQXtmmszRoUC2yxy3MS/MXUYlTBKgMQQD0BAIviC3gjR9P0j4ueIvAdqLv7RZi6ubmJVudPjkYIs0mMhmjLLx1XnB45APXlO4ZGMUAI67lK5xmgDkvDnwz8BeHdVn1TRPCek2N3PG0cksVuAdrH5lHZQe4GAaALPhDwF4O8I3Nzc%2BGvDmm6VNdY8%2BS2gClwDkD2XJzgYHtQB01AGR4r8N6H4q0htJ8Q6bBqFizhzDKONw6HjkEUAZs/wAPfBM/hWHwrN4X0ltDhcSRWQtlEcbjPzrjo3J%2BYc8nnmgDZ8P6LpXh/SoNJ0XT7bT7C3XbDb28YREGc8Ae5J/GgCbVtPs9V0y503UbeO5s7qJop4ZBlZEYYKkehFAHL6P8Lfh7pFlf2Wm%2BD9Gt7bUYvKvYVtgUnQHIVgeDzzQBZsPh54JsfDF34ZtfDGlx6PeNuubT7OpSZuOXz948Dk8jAx0oA0fCXhjQPCemHTPDmk2ml2ZcyGK3jChmPVmPVj7nngelAGxQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHnnxb8Cal4x13wRqFjd2kCeHdei1OdZy2ZUQcquAfm%2BuKAOJ%2BJPwY8U654j8bS6Hq2hppnjeCyi1Jr%2BORriz%2Bz8ZhC/K%2BRzhiMHHpQBn%2BLfgH4j1D/hJtB0zXtLHh3xPc2Fxe3V4sjajb/ZwgIjIG187OCxGNxHvQB6b8MvBN94U8QeNNQu7u3uItf1cX1use7dGnlKmHyB82VzxmgDzPxX8CPFWow%2BM/DGm65o0XhXxhri6xeyzpIb22YyJJIkYA2NlkGCSOOtAHWaj8N/E8fjzxlqukaho7aR4t0mKyuo7oSCe3eG3kijKFRtKkuCc84zigDEPwV186elv/ammbl%2BGp8IZ%2BfH2j/nr93/V/r7UALefC/4jS%2BJPCU0uoeFtS0HwxYWsNlpt41wI1uo4kR7oqq4eQYcR7shQQQA2TQBlz/BDx/e/ETTPEGq%2BLrW/tNN8U/2xD597du/2YvuEKwsTDGVHA2rzk8gcUAXLv4L%2BL5PAni3wWmraE2nar4gGsWM7CVZUzdJM6SDBXomAV7nmgCPXfgX4lvNU1/SrbWtHXwzr/iaPxDdXEqSHUYHDBmiiIGzGRhWJBUE8GgC1qfwR1m5tL5I9R0pZ7n4iL4rEhD5%2BzrjERO37/X2560Adl8dfDGreINM8M6hotm19feHvEllqwtFkRDPHG5WRQXIUNscsMn%2BHFAEnjb4c2XiXxDDqFvaaVpyyRs9/exWqi9upUC/Z0ZtvzRIwEhBbloohjANAHnWv/Crx83wh8QeD5b%2BDULnxBc6dagR3TSQ2UUYiW4uyZtrFpCjyMignceNxJNAH0HBGIYUiXoqhR%2BFAElABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAlACL3%2BtADJP9Z%2BH9aAJaACgAoAKACgAoAKACgAoAKACgAoAKAD/2Q=='/%3E%0A%3C/svg%3E)
λ. The carriers are then delivered to an off line storage
shelf in the target bay, or inserted directly into a tool if
there is a tool port opening. As the process tool FIFO input
buffers in the bay open up some free space, the carriers are
moved from the bay stocker into these FIFO buffers. Tool
buffers are set to have a capacity of thee substrate carriers.
Two ports are reserved for tool input, and one for output.
At the tool, the logistics process ends in constant in-
process residence of the carrier for 20 min. As carriers are
spawned at a tool output buffer, the tool input FIFO buffers
are consumed accordingly.
Determining the number of vehicles employed.
According to the Poisson process, the evolution of
client wafer carriers creates a demand rate for carrier
delivery which follows a uniform distribution. The number
of vehicles to be used is calculated to instantly respond to
approximately 96% of the probable demand rate with a
mean delivery time of 1.3 min.
b) The Hybrid conveyor simulation model.
A substrate is picked up by a robotic tool interface
device EDi (or hoist vehicle) which is dedicated to the tool,
or to an immediate tool group, and placed directly on the
intra bay section of a continuous conveyor network
throughout the fab. The carrier will then travel to the target
bay where the conveyor move terminates in one of many
conveyor I/O ports (output buffers) dedicated to specific
tools. There, the tool’s dedicated interface robot, will place
the carrier into the Tool’s FIFO input buffer, space
allowing. If no space is open on the tool, the carrier stays
on the conveyor’s I/O port. Again the fab logistics is
terminated at the tool’s input buffer.
Determining the number of tool interface robots.
Hybrid AMHS I/O ports are interfaced with the tool ports
via robotics (EDi), at each tool, or immediate tool groups.
The number of such devices is determined to provide move
times from tool port to conveyor port, in 14 seconds (96%
demand rate distribution).
RESULTS
The OC curves as output of the simulation model are
shown in Fig. 2. The curves show differences, having a
lower cycle time for the Hybrid AMHS, in all fab
throughput regions (utilization). It is also noted that at
operation close to fab design-throughput the discrete
vehicle model decays significantly faster toward higher
cycle time values, or loss of throughput. Stated in another
way, the variability contribution of the AMHS, in a fab,
operating near 90% throughput capacity, results in
increasing cycle time in the case of pure vehicle AMHS,
as compared to a hybrid AMHS.
While examining the curves, it is important to note
that major manufacturing process variabilities are omitted
from the model in order to evaluate the variabilities due
only to AMHS. Having different operating curves for the
same stochastic Fab, with non-variant tool-value add
steps, is an indication of the direct manipulative power of
the AMHS on over all process variability.
Figure 2: Effect of sole AMHS variability on the Fab
process. Lower Hybrid, Upper curve vehicle AMHS
REFERENCES
[1] S.S. Aurand, P.J. Miller, The Operating Curve: A
method to Measure and Benchmark Manufacturing
Line Productivity. 1997 ASMC Conference,
Cambridge, Ma.
[2] Roland Schelasin, National Semiconductor, Using
Static Capacity Modeling and Queueing Theory
Equations to predict Factory Cycle time, Proceedings
of the 2011 Winter Simulation Conference. [3] R.
P. Feynman, Lectures on Physics, Addison Wesley,
1989.
[3] Steve C. H. Lu at all, Efficient Scheduling Policies to
Reduce Mean and Variance of Cycle Time.
Department of Electrical and Computer Engineering,
University of Illinois, NSF Grant ECS-90-2007.
[4] Da-Yin Liao, Vehicle Clustering Phenomenon in
AMHS, Material Science Forum, Vols. 505-507
(2006).
[5] International Sematech, 300 mm Factory Layout and
AMHS Phase I, II, and III Reports, Tech Transfer
#99113848-Eng.
[6] Middlesex General Industries Report, Simulation of
the Sematech Generic Fab Model, 4/5/2004.
Reference: Tech Transfer #99113848-Eng.
[7] Muh Cheng, Hit Rate Based Dispatching Rule For
Semiconductor Manufacturing, International Journal
of Industrial Engineering 15(1) 73-82, 2008.
[8] Sematech Technology Transfer #05074662A-TR,
Integrated Middlesex Industries Conveyor and OHT
AMHS.
[9] Hiroshi Nagamochi, Approximating a Vehicle
Scheduling Problem with Time Windows. Technical
Computer Science 393 (2008).